Plane rotations and Hamilton-Dirac mechanics

نویسنده

  • Eugen Paal
چکیده

Canonical formalism for SO(2) is developed. This group can be seen as a toy model of the Hamilton-Dirac mechanics with constraints. The Lagrangian and Hamiltonian are explicitly constructed and their physical interpretation are given. The Euler-Lagrange and Hamiltonian canonical equations coincide with the Lie equations. It is shown that the constraints satisfy CCR. Consistency of the constraints is checked.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Clifford Algebra and the Interpretation of Quantum Mechanics

The Dirac theory has a hidden geometric structure. This talk traces the conceptual steps taken to uncover that structure and points out significant implications for the interpretation of quantum mechanics. The unit imaginary in the Dirac equation is shown to represent the generator of rotations in a spacelike plane related to the spin. This implies a geometric interpretation for the generator o...

متن کامل

Real Dirac Theory

The Dirac theory is completely reformulated in terms of Spacetime Algebra, a real Clifford Algebra characterizing the geometrical properties of spacetime. This eliminates redundancy in the conventional matrix formulation and reveals a hidden geometric structure in the theory. Among other things, it reveals that complex numbers in the Dirac equation have a kinematical interpretation, with the un...

متن کامل

Longitudinal-Torsional and Two Plane Transverse Vibrations of a Composite Timoshenko Rotor

In this paper, two kinds of vibrations are considered for a composite Timoshenko rotor: longitudinal-torsional vibration and two plane transverse one. The kinetic and potential energies and virtual work due to the gyroscopic effects are calculated and the set of six governing equations and boundary conditions are derived using Hamilton principle. Differential quadrature method (DQM) is used as ...

متن کامل

Discrete Dirac Structures and Variational Discrete Dirac Mechanics

We construct discrete analogues of Dirac structures by considering the geometry of symplectic maps and their associated generating functions, in a manner analogous to the construction of continuous Dirac structures in terms of the geometry of symplectic vector fields and their associated Hamiltonians. We demonstrate that this framework provides a means of deriving implicit discrete Lagrangian a...

متن کامل

ar X iv : 0 81 0 . 07 40 v 1 [ m at h . SG ] 4 O ct 2 00 8 DISCRETE DIRAC STRUCTURES AND VARIATIONAL DISCRETE DIRAC MECHANICS

We construct discrete analogues of Dirac structures by considering the geometry of symplectic maps and their associated generating functions, in a manner analogous to the construction of continuous Dirac structures in terms of the geometry of symplectic vector fields and their associated Hamiltonians. We demonstrate that this framework provides a means of deriving implicit discrete Lagrangian a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008